3.9.76 \(\int \frac {(d+e x)^2}{\sqrt {c d^2+2 c d e x+c e^2 x^2}} \, dx\)

Optimal. Leaf size=39 \[ \frac {(d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}}{2 c e} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {642, 609} \begin {gather*} \frac {(d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}}{2 c e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2],x]

[Out]

((d + e*x)*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2])/(2*c*e)

Rule 609

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p + 1
)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && NeQ[p, -2^(-1)]

Rule 642

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^m/c^(m/2), Int[(a +
b*x + c*x^2)^(p + m/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && EqQ[
2*c*d - b*e, 0] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {(d+e x)^2}{\sqrt {c d^2+2 c d e x+c e^2 x^2}} \, dx &=\frac {\int \sqrt {c d^2+2 c d e x+c e^2 x^2} \, dx}{c}\\ &=\frac {(d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}}{2 c e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 30, normalized size = 0.77 \begin {gather*} \frac {x (d+e x) (2 d+e x)}{2 \sqrt {c (d+e x)^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2],x]

[Out]

(x*(d + e*x)*(2*d + e*x))/(2*Sqrt[c*(d + e*x)^2])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.34, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(d+e x)^2}{\sqrt {c d^2+2 c d e x+c e^2 x^2}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(d + e*x)^2/Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2],x]

[Out]

Defer[IntegrateAlgebraic][(d + e*x)^2/Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2], x]

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 44, normalized size = 1.13 \begin {gather*} \frac {\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} {\left (e x^{2} + 2 \, d x\right )}}{2 \, {\left (c e x + c d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*(e*x^2 + 2*d*x)/(c*e*x + c*d)

________________________________________________________________________________________

giac [A]  time = 0.42, size = 37, normalized size = 0.95 \begin {gather*} \frac {1}{2} \, \sqrt {c x^{2} e^{2} + 2 \, c d x e + c d^{2}} {\left (\frac {d e^{\left (-1\right )}}{c} + \frac {x}{c}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(c*x^2*e^2 + 2*c*d*x*e + c*d^2)*(d*e^(-1)/c + x/c)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 38, normalized size = 0.97 \begin {gather*} \frac {\left (e x +2 d \right ) \left (e x +d \right ) x}{2 \sqrt {c \,e^{2} x^{2}+2 c d e x +c \,d^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x)

[Out]

1/2*x*(e*x+2*d)*(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.36, size = 48, normalized size = 1.23 \begin {gather*} \frac {e x^{2}}{2 \, \sqrt {c}} - \frac {d x}{\sqrt {c}} + \frac {2 \, \sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} d}{c e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="maxima")

[Out]

1/2*e*x^2/sqrt(c) - d*x/sqrt(c) + 2*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*d/(c*e)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^2}{\sqrt {c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^2/(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2),x)

[Out]

int((d + e*x)^2/(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{2}}{\sqrt {c \left (d + e x\right )^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(c*e**2*x**2+2*c*d*e*x+c*d**2)**(1/2),x)

[Out]

Integral((d + e*x)**2/sqrt(c*(d + e*x)**2), x)

________________________________________________________________________________________